Calculating the Log-Likelihood for Lab Session \#2

For Lab Session \#2, Limdep prints out the log likelihood function, $L L(\boldsymbol{\beta})$, and the restricted likelihood function which is not $L L(0)$ (the likelihood function when all parameters are equal to zero). But we need $L L(0)$ to compute ρ^{2}

To compute $L L(0)$, note that from Eq. 11.4 on page 284 of the text:

$$
L L(\boldsymbol{\beta})=\sum_{i=1}^{n}\left[-E X P\left(\boldsymbol{\beta} \mathbf{X}_{i}\right)+y_{i} \boldsymbol{\beta} \mathbf{X}_{i}-L N\left(y_{i}!\right)\right] .
$$

When $\boldsymbol{\beta}=0$, the term $y_{i} \boldsymbol{\beta} \mathbf{X}_{i}$ falls out since they will be zeros for all 96 observations. The term $-\operatorname{EXP}\left(\boldsymbol{\beta} \mathbf{X}_{i}\right)$ will be equal to 1 for all observations so this term will contribute -96 to the loglikelihood when summed over the 96 observations. This leaves $-L N\left(y_{i}!\right)$. To calculate the effect of this term, the following is done:

y_{i} trip changes	Number of observations $\left(N_{\mathrm{yi}}\right)$ making y_{i} trip changes (from Limdep histogram command)	$-L N\left(y_{i}!\right)$	$N_{y_{i}} \times\left[-L N\left(y_{i}!\right)\right]$
	18	0	0
	23	0	0
2	27	-0.693	-18.715
3	20	-1.792	-35.835
4	1	-3.178	-3.178
5	7	-4.787	-33.509
TOTAL	96		-91.237

Thus the log-likelihood at zero is (see $L L(\boldsymbol{\beta})$ equation above),

$$
L L(0)=-96+0-91.237=-187.237
$$

So, when applying Eq. 11.12 (page 287 of text) at the end of assignment $\# 2$ you will have:

$$
\rho^{2}=1-\frac{L L(\boldsymbol{\beta})}{L L(\mathbf{0})}=1-\frac{\text { your limdep reported log likelihood function }}{-187.237}=?
$$

