Calculating the Log-Likelihood for Lab Session #2

For Lab Session #2, Limdep prints out the log likelihood function, $LL(\beta)$, and the restricted likelihood function which is not LL(0) (the likelihood function when all parameters are equal to zero). But we need LL(0) to compute ρ^2

To compute LL(0), note that from Eq. 11.4 on page 284 of the text:

$$LL(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left[-EXP(\boldsymbol{\beta}\mathbf{X}_{i}) + y_{i}\boldsymbol{\beta}\mathbf{X}_{i} - LN(y_{i}!) \right].$$

When $\beta = 0$, the term $y_i \beta X_i$ falls out since they will be zeros for all 96 observations. The term $-EXP(\beta X_i)$ will be equal to 1 for all observations so this term will contribute -96 to the loglikelihood when summed over the 96 observations. This leaves $-LN(y_i!)$. To calculate the effect of this term, the following is done:

<i>y_i</i> trip changes	Number of observations (N_{yi}) making y_i trip changes (from Limdep histogram command)	$-LN(y_i!)$	$N_{y_i} \times \left[-LN(y_i!)\right]$
0	18	0	0
1	23	0	0
2	27	-0.693	-18.715
3	20	-1.792	-35.835
4	1	-3.178	-3.178
5	7	-4.787	-33.509
TOTAL	96		-91.237

Thus the log-likelihood at zero is (see $LL(\beta)$ equation above),

$$LL(0) = -96 + 0 - 91.237 = -187.237$$

So, when applying Eq. 11.12 (page 287 of text) at the end of assignment #2 you will have:

$$\rho^{2} = 1 - \frac{LL(\beta)}{LL(0)} = 1 - \frac{\text{your limdep reported log likelihood function}}{-187.237} = ?$$